CANT HAVE SECURITY

CS E 333 ‘ 'M‘:,‘E‘;TSE?:‘:‘,‘:J“;)vuiumnmums ONYOUR WEBSITE
Section 9 " 1.

l"

‘MI.

HW4, HTTP, and Boost PRAVEDONT ALTER IFEVERY REQUEST

irANvEuRTHER © ' CRASHES THE SERVER

WHAT DOES THE RED LINE

THROUGH HTTPS MEAN?
OH, JUST THAT THE SITE HASN'T
BEEN UPDATED SINCE 2015 OR S0,

\
AND SINCE 1IT'S BEEN AROUND THAT
LONG IT MEANS IT'S PROBABLY LEGIT.

Logistics

e Exercise 12 due week of 12/4 @10PM (monday)
e Homework 4 due Wed 12/6 @10 PM (wednesday)

HTTP Review

HTTP Review

1. Whatdoes HTTP stand for?

HyperText Transfer Protocol
2. What layer does HTTP reside in?

Application Layer

3. What does HTTP define?

HTTP defines how we should send information
between a client and a server

Methodl URI Version

GET /courses/cse333/22wi/ HTTP/1.1

Host: courses.cs.washington.edu

Connection: keep-alive

sec—-ch-ua: " Not A;Brand";v="99", "Chromium";v="98", "Google Chrome'";v="98"

sec-ch-ua-mobile: 70

sec—ch-ua-platform: "mac0S"

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.8.4758.109 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document Headers

Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.9,es;q=0.8,1it;q=0.7,zh-(N;q=0.6,2h;q=0.5

Cookie: rl_page_init_referrer=RudderEncrypt%3AU2FsdGVkX1%2BP11iJ%2BrlvdZYv50b9rEBtZro7gXF7fY40%3D; rl_page_init_referring_domain=RudderEncrypt%3AU2FsdGVkX18%2
FC3vkp4W%2BxqaST8KA3F3AquE%2F LlamkREM%3D; rl_anonymous_id=RudderEncrypt%3AU2FsdGVkX1%2FMtx35z0GyoUCtalDCjvIFScOb@cibrqiI@NPgcLLIZFM8eqsIAL19Lqzn3C861QTre2gadqQ
rurQ%3D%3D; rl_group_id=RudderEncrypt%3AU2FsdGVkX1%2BSET%2BaL0e iWPUEOBI450fQyBKKn@8Gs \w%3D; rl_group_trait=RudderEncrypt%3AU2FsdGVkX1%2Ba%2B0tjYuogrYGTwyCkop
4F7cmU3X%2ByiqU%3D; rl_user_id=RudderEncrypt%3AU2FsdGVkX1%2BhNfbEzeBvuC3065Vr2120VtvpPpBrna@P2Hn5nsOTKfVCvnFNLiIK; rl_trait=RudderEncrypt%3AU2FsdGVkX19S@0AzIw
7sfF830YByGyrS8r0ttBqA%2FMEY%3D

HTTP Request Format

[METHOD] [request-uri] HTTP/[version]\r\n
[headerfieldl]: [fieldvaluel]\r\n
[headerfield2]: [fieldvalue2]\r\n

[...]

Note: Double return
indicates the end of the

[headerfieldN]: [fieldvalueN]J\r\n headers section

\r\n

HTTP Methods

) e

- HEAD
) rost

PUT
DELETE
CONNECT
OPTIONS
TRACE

PATCH

The GET method requests a representation of the specified resource. Requests using GET should only retrieve
data.

The HEAD method asks for a response identical to that of a GET request, but without the response body.

The POST method is used to submit an entity to the specified resource, often causing a change in state or side
effects on the server.

The PUT method replaces all current representations of the target resource with the request payload.
The DELETE method deletes the specified resource.

The CONNECT method establishes a tunnel to the server identified by the target resource.

The OPTIONS method is used to describe the communication options for the target resource.

The TRACE method performs a message loop-back test along the path to the target resource.

The PATCH method is used to apply partial modifications to a resource.

Version

HTTP/1.1 200 OK Status

Date: Mon, 21 May 2018 07:58:46 GMT

Server: Apache/2.2.32 (Unix) mod ssl1/2.2.32 OpenSSL/1.0.le-fips

mod pubcookie/3.3.4a mod uwa/3.2.1 Phusion Passenger/3.0.11
Last-Modified: Mon, 21 May 2018 07:58:05 GMT

ETag: "2299%elef-52-56cb2a9615625"

Accept-Ranges: bytes

Content-Length: 82

Vary: Accept-Encoding,User-Agent Headers

Connection: close

Content-Type: text/html

Set-Cookie:
bbbbbbbbbbbbbbb=DBMLFDMJCGAOILMBPIIAATIFLGBAKOJNNMCJIKKBKCDMDEJHMPONHCILPIBL
ADEAKCIABMEEPAOPMMKAOLHOKJMIGMIDKIHNCANAPHMFMBLBABPFENPDANJAPIBOIOOOD;
HttpOnly

Response
body

<html><body>
Awesome! !
</body></html>

HTTP Response Format

HTTP/[version] [status code] [reason]\r\n
[headerfieldl]: [fieldvaluel]\r\n

[headerfield2]: [fieldvalue2]\r\n

[¢ o :| Note: Double return
indicates the end of the
[headerfieldN]: [fieldvalueN]|\r\n headers section

\r\n

HTTP Response Status Codes

e HTTP/1.1 200 OK

o Therequest succeeded and the
requested object is sent

o HW4 Ex: User requests a file thatis
successfully found by the server

e HTTP/1.1 404 Not Found
o Therequested object was not found
o HWA4 Ex: User requests a file that has

been deleted so server can’t find it

HTTP/1.1 301 Moved
Permanently

O

(@)

@)

The object exists, but its name has
changed

The new URL is given as the
“Location:” header value

Ex: washington.edu is redirected
permanently to uowash.edu

HTTP/1.1 500 Server Error

The server had some kind of unexpected
error
Ex: Corrupted browser cache

10

HW4 Overview

HW4: Web Server

Establish client connections m—)

1.

a.

Server socket set up
inhw4 /ServerSocket.cc

Socket API: Server TCP Connection

« Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen
2) Create a socket

3) bind () the socket to the address(es) and port

4) Tell the socket to Llisten () forincoming clients

5) accept () aclient connection

Helpful to refer to:
e Server-side networking lecture
e server_accept_rw_close.cc
e Exercisell

12

HW4: Web Server

1. Establish client connections
a. Serversocketsetup
inhw4 /ServerSocket.cc
2. Read client requests [
a. Parseincoming HTTP requests
in hw4 /HttpConnection.cc

[
[
[
[.
[
\
[

METHOD] [request-uri] HTTP/[version]\r\n

headerfieldl]: [fieldvaluel]\r\n

headerfield2]: [fieldvalue2]\r\n
.

headerfleldN] [fieldvalueN]\r\n

N

request body, if any]

Notes:
e Request may be split across multiple
read()’s
e Parse by splitting strings - can have any
number of headers
e Working just with GET (i.e., no body)

13

HW4: Web Server

1. Establish client connections
a. Serversocketsetup
inhw4 /ServerSocket.cc
2. Readclient requests
a. Parse HTTP requests
in hw4 /HttpConnection.cc
3. Respond to requests [
a. Write HTTP responses
in hw4 /HttpServer.cc

HTTP/ [version] [status code] [reason]\r\n
[headerfieldl]: [fieldvaluel]\r\n
[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

NENHR

[response body, if any]

Notes:
e Built up via string manipulation
e Must handle a variety of situations based
on request
e Interact with index and static files

14

HW4: Web Server

Establish client connections
a. Serversocketsetup

inhw4 /ServerSocket.cc
Read client requests

a. Parse HTTP requests Cross-site scripting flaw:

in hw4 /HttpConnection.cc Clients can supply code for execution!
Respond tO req UeStS hello <script>alert("Boo!");</script>
a. Write HTTP responses Directory traversal attack:

in hw4 /HttpServer.cc Clients can gain unauthorized access to files!

Fix security vulnerabilities B :cocic/../ma/nttpnan.co
a. Escape charactersinhw4/Utils.cc

15

HW4: Web Server

1.

Establish client connections

a.

Server socket set up
inhw4 /ServerSocket.cc

Read client requests

a.

Parse HTTP requests \

in hw4 /HttpConnection.cc

Respond to requests

d.

Write HTTP responses
in hw4 /HttpServer.cc

Fix security vulnerabilities

a.

Escape charactersin hw4 /Utils.cc

Steps 2, 3, and 4 involve a lot of
string manipulation which can be
tedious!

boost

16

HW4 Tools Demo

(Telnet and
Browser)

(Helpful for debugging!!!)

Executables

e Runningmake in hw4/ will produce test_suiteand http333d
o test_suiteisalwaysagood place to start to start debugging using the usual tools

(program output and GDB)
o You can test with http333d (even if it’s not complete) by sending it requests via telnet

or a web browser

® You also have accessto solution_binaries/http333dand

solution_binaries/http333d_withflaws
o Do NOT leave the version with flaws running on an attu machine!

® Launchingthe server:
o ./http333d <port> ../projdocs/ unit_test_indices/x*
o Orreplace ./http333dwith./solution_binaries/http333d

18

Writing an HTTP Request

e Generic HTTP request layout can be easily found in HttpRequest.h

e HW4 request types:
o Examplefile request:
m GET /static/test_tree/books/artofwar.txt HTTP/1.1
o Example query request:
m GET /query?terms=books+of+war HTTP/1.1

e Headers:
o For HW4, can get away with no headers
o Can see others in browser-generated requests or looking at the HTTP lecture slides

19

Sending a Request (and Viewing Response)

Telnet: Browser:
1. telnet <HostName> <port> 1. http://<HostName>:<port>
2. Manually type out HTTP request. 2. Append URIs from last slide to URL

3. Finish request by hitting [Enter] to send different types of request.

twice. 3. Openthe Network tab in Developer
Tools to see request and response.
a. <F12>orCtrl+Shift+I
(Chrome, Firefox)
b. Warning: the UX here can be a
little confusing

4. Exitusing Ctrl+] then Ctrl+d
orenteringinquit

xTelnet is no longer on
attu, can download on local
computer 20

4. Close browser tab when done.

Debugging Your Server's Responses

e Generic HTTP response layout can be easily found in Ht tpResponse. h
o Responses will have a body!

e Copywhatsolution_binaries/http333ddoes
o Cansimply copy the HTML if you’re not familiar

e Content-Typeisreallyimportant!
o Tells client how to handle/interpret the response body
o Your server should work with a variety of file types
(in particular, see projdocs/bikeapalooza_2011/)

21

Using Telnet with HW4

1.

Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

Connect with telnet

telnet <HostName> <port>

Write an HTTP request and send it

To exit telnet:

©)

Ctrl+] then Ctrl+d

22

Debugging for HW4

e Telnet
o Form requests to your server
o Look atthe HTTP Responses
e Browser Developer Tools (see lecture for a [brief] demo)
o Can compare (between provided solution and your implementation):
m TheHTML
m HTTP Requests Sent
m HTTP Replies

e Other strategies you have been using all quarter:)
o Examining intermediate values (parsing/building replies)

23

Q-
3
es
g%
£3
s
N%
w2
22

24

Boost

Boost is a free C++ library that provides support for various tasks in C++
e Note: Boost does NOT follow the Google style guide!!!

Boost adds many string algorithms that you may have seen in Java
e Includewith #include <boost/algorithm/string.hpp>

We are showcasing a few we think could be useful for HW4, but more can be found here:

e https://www.boost.org/doc/libs/1 60 0/doc/html/string algo.html

25

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

trim

void boost::trim(string& input);
e Removes all leading and trailing whitespace from the string
e nputisaninputandoutput parameter (non-const reference)

string s(" HI ")
boost::algorithm::trim(s);

// results in s == "HI"

26

replace_all

void boost::replace_all(string& input, const string& search,
const string& format);

e Replacesallinstances of search inside input with format

string s("ynrnrt");
boost::algorithm::replace_all(s, "nr'", "e");

// results in s == "yeet"

27

replace_all

void boost::replace_all(string& input, const string& search,
const string& format);

e Replacesallinstances of search inside input with format

string s("queue?");
boost::algorithm::replace_all(s, "que", "q");
// results in s == "que?"
replace_all() guarantees that

‘format’ will be in the final result
if-and-only-if ¢ search’ existed.

replace_all() makes a single
pass over input.

28

split

void boost::split(vector<string>& output,
const string& input,
boost: :PredicateT match_on,
boost: :token_compress_mode_type compress);
e Splitthe string by the charactersinmatch_on
e Note: leading and trailing delimiter is +ignored (treated
as un)

boost::PredicateT boost::is_any_of(const string& tokens);
e Returns predicate that matches on any of the characters in tokens

29

split Examples

vector<string> tokens;

string s("I-am--split");

boost::split(tokens, s, boost::is_any_of("-"),
boost: :token_compress_on);
// results in tokens == ["I", "am", "split"]

boost::split(tokens, s, boost::is_any_of("-"),
boost: :token_compress_off);
// results in tokens == ["I", "am", "", “split'"]

Exercise 1

Write a function called ExtractRequestLine that takes in a well-formatted
HTTP request as a string and returns a map with the keys as method, ur1,
version and the values from the corresponding request.

Example Input:

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnection:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

Map Returned:

{
"method" : "GET"
"uri" : "/index.html"
"version" : "HTTP/1.1"

31

Exercise 1

Write a function called ExtractRequestLine that takes in a well-formatted
HTTP request as a string and returns a map with the keys as method, ur1,
version and the values from the corresponding request.

Example Input:

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnect 1ion:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

Map Returned:

{
"method" : "GET"
"uri" : "/index.html"
"version" : "HTTP/1.1"

32

Exercise 1

map<string,string> ExtractRequestLine(const string& request)

vector<string> lines;

boost::split(lines, request, boost::is_any_of("\r\n"),
boost::token_compress_on);

vector<string> components;

string firstLine = lines[0];

boost::split(components, firstLine, boost::is_any_of(" "),
boost::token_compress_on);

map<string, string> res;

res["methOd"] = componentS[G])
res["uri"] = components[1];
res["version"] = components[2];

return res;

33

Exercise 2

Write a function RemoveDuplicates that takesin a string that contains
words separated by whitespace and returns a vector that contains all of the

words in that string, in the same order as they show up, but with no duplicates.

lgnore all leading and trailing whitespace in the input string.

Example:
RemoveDuplicates(" Hi I'm sorry jon sorry hi\nhihi hi hi ")

should return vector:

[HH-iH, IIIImH, "SOFFy", lljonll, llh-ill, llh-ih-ill:l

34

Exercise 2

Write a function RemoveDuplicates that takesin a string that contains
words separated by whitespace and returns a vector that contains all of the

words in that string, in the same order as they show up, but with no duplicates.

lgnore all leading and trailing whitespace in the input string.

Example:
RemoveDuplicates(" Hi I'm sorry jon sorry hi hihi hi hi ")

should return vector:

[HH-iH, IIIImH, "SOFFy", lljonll, llh-ill, llh-ih-ill:l

35

vector<string> RemoveDuplicates(const string& input){

string copy(input);

boost::algorithm::trim(copy);

std::vector<string> components;

boost::split(components, copy, boost::is_any_of(" \t\n"),
boost: :token_compress_on);

std::vector<string> result;
std::set<string> unique_components;
for (const auto& comp : components) {
if (unique_components.find(comp) == unique_components.end()) {
result.push_back(comp);
unique_components.insert(comp);

}

return result;

36

