
CSE 333
Section 9
HW4, HTTP, and Boost

1

Logistics
● Exercise 12 due week of 12/4 @10PM (monday)
● Homework 4 due Wed 12/6 @10 PM (wednesday)

2

HTTP Review

3

HTTP Review
1. What does HTTP stand for?

2. What layer does HTTP reside in?

3. What does HTTP define?

HyperText Transfer Protocol

Application Layer

4

HTTP defines how we should send information
between a client and a server

5

Version

Headers

Method URI

HTTP Request Format
[METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

6

Note: Double return
indicates the end of the
headers section

GET The GET method requests a representation of the specified resource. Requests using GET should only retrieve
data.

HEAD The HEAD method asks for a response identical to that of a GET request, but without the response body.

POST The POST method is used to submit an entity to the specified resource, often causing a change in state or side
effects on the server.

PUT The PUT method replaces all current representations of the target resource with the request payload.

DELETE The DELETE method deletes the specified resource.

CONNECT The CONNECT method establishes a tunnel to the server identified by the target resource.

OPTIONS The OPTIONS method is used to describe the communication options for the target resource.

TRACE The TRACE method performs a message loop-back test along the path to the target resource.

PATCH The PATCH method is used to apply partial modifications to a resource.

HTTP Methods

7

Version

Status

Headers

Response
body

8

HTTP Response Format
HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

9

Note: Double return
indicates the end of the
headers section

HTTP Response Status Codes
● HTTP/1.1 200 OK

○ The request succeeded and the
requested object is sent

○ HW4 Ex: User requests a file that is
successfully found by the server

● HTTP/1.1 404 Not Found
○ The requested object was not found
○ HW4 Ex: User requests a file that has

been deleted so server canʼt find it

10

● HTTP/1.1 301 Moved
Permanently

○ The object exists, but its name has
changed

○ The new URL is given as the
“Location:” header value

○ Ex: washington.edu is redirected
permanently to uowash.edu

● HTTP/1.1 500 Server Error
○ The server had some kind of unexpected

error
○ Ex: Corrupted browser cache

HW4 Overview

11

HW4: Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

12

Helpful to refer to:
● Server-side networking lecture
● server_accept_rw_close.cc
● Exercise 11

HW4: Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

2. Read client requests
a. Parse incoming HTTP requests

in hw4/HttpConnection.cc

13

Notes:
● Request may be split across multiple

read()’s
● Parse by splitting strings – can have any

number of headers
● Working just with GET (i.e., no body)

HW4: Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

2. Read client requests
a. Parse HTTP requests

in hw4/HttpConnection.cc
3. Respond to requests

a. Write HTTP responses
in hw4/HttpServer.cc

14

Notes:
● Built up via string manipulation
● Must handle a variety of situations based

on request
● Interact with index and static files

HW4: Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

2. Read client requests
a. Parse HTTP requests

in hw4/HttpConnection.cc
3. Respond to requests

a. Write HTTP responses
in hw4/HttpServer.cc

4. Fix security vulnerabilities
a. Escape characters in hw4/Utils.cc

15

Directory traversal attack:
Clients can gain unauthorized access to files!

Cross-site scripting flaw:
Clients can supply code for execution!

HW4: Web Server
1. Establish client connections

a. Server socket set up
in hw4/ServerSocket.cc

2. Read client requests
a. Parse HTTP requests

in hw4/HttpConnection.cc
3. Respond to requests

a. Write HTTP responses
in hw4/HttpServer.cc

4. Fix security vulnerabilities
a. Escape characters in hw4/Utils.cc

16

Steps 2, 3, and 4 involve a lot of
string manipulation which can be

tedious!

HW4 Tools Demo
(Telnet and

Browser)

17

(Helpful for debugging!!!)

Executables
● Running make in hw4/ will produce test_suite and http333d

○ test_suite is always a good place to start to start debugging using the usual tools
(program output and GDB)

○ You can test with http333d (even if itʼs not complete) by sending it requests via telnet
or a web browser

● You also have access to solution_binaries/http333d and
solution_binaries/http333d_withflaws
○ Do NOT leave the version with flaws running on an attu machine!

● Launching the server:
○ ./http333d <port> ../projdocs/ unit_test_indices/*
○ Or replace ./http333d with ./solution_binaries/http333d

18

Writing an HTTP Request
● Generic HTTP request layout can be easily found in HttpRequest.h

● HW4 request types:
○ Example file request:

■ GET /static/test_tree/books/artofwar.txt HTTP/1.1
○ Example query request:

■ GET /query?terms=books+of+war HTTP/1.1

● Headers:
○ For HW4, can get away with no headers
○ Can see others in browser-generated requests or looking at the HTTP lecture slides

19

Sending a Request (and Viewing Response)
Telnet:
1. telnet <HostName> <port>

2. Manually type out HTTP request.

3. Finish request by hitting [Enter]
twice.

4. Exit using Ctrl+] then Ctrl+d
or entering in quit

*Telnet is no longer on
attu, can download on local
computer 20

Browser:
1. http://<HostName>:<port>

2. Append URIs from last slide to URL
to send different types of request.

3. Open the Network tab in Developer
Tools to see request and response.
a. <F12> or Ctrl+Shift+I

(Chrome, Firefox)
b. Warning: the UX here can be a

little confusing

4. Close browser tab when done.

Debugging Your Server’s Responses
● Generic HTTP response layout can be easily found in HttpResponse.h

○ Responses will have a body!

● Copy what solution_binaries/http333d does
○ Can simply copy the HTML if youʼre not familiar

● Content-Type is really important!
○ Tells client how to handle/interpret the response body
○ Your server should work with a variety of file types

(in particular, see projdocs/bikeapalooza_2011/)

21

Using Telnet with HW4
1. Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

2. Connect with telnet

telnet <HostName> <port>

3. Write an HTTP request and send it

4. To exit telnet:
○ Ctrl+] then Ctrl+d

22

Debugging for HW4
● Telnet

○ Form requests to your server
○ Look at the HTTP Responses

● Browser Developer Tools (see lecture for a [brief] demo)
○ Can compare (between provided solution and your implementation):

■ The HTML
■ HTTP Requests Sent
■ HTTP Replies

● Other strategies you have been using all quarter :)
○ Examining intermediate values (parsing/building replies)

23

Boooooooooooost

24

Boost
Boost is a free C++ library that provides support for various tasks in C++
● Note: Boost does NOT follow the Google style guide!!!

Boost adds many string algorithms that you may have seen in Java
● Include with #include <boost/algorithm/string.hpp>

We are showcasing a few we think could be useful for HW4, but more can be found here:
● https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

25

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

trim
void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string
● input is an input and output parameter (non-const reference)

string s(" HI ");
boost::algorithm::trim(s);

// results in s == "HI"

26

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);
● Replaces all instances of search inside input with format

string s("ynrnrt");
boost::algorithm::replace_all(s, "nr", "e");

// results in s == "yeet"

27

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);
● Replaces all instances of search inside input with format

string s("queue?");
boost::algorithm::replace_all(s, "que", "q");

replace_all() guarantees that
‘format’ will be in the final result
if-and-only-if ‘search’ existed.

replace_all() makes a single
pass over input.

// results in s == "que?"

28

split
void boost::split(vector<string>& output,

 const string& input,
 boost::PredicateT match_on,
 boost::token_compress_mode_type compress);

● Split the string by the characters in match_on
● Note: leading and trailing delimiter is ignored (treated

as “”)

boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens

29

split Examples
vector<string> tokens;

string s("I-am--split");

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_on);
// results in tokens == ["I", "am", "split"]

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_off);
// results in tokens == ["I", "am", "", “split"]

30

Exercise 1

3131

Write a function called ExtractRequestLine that takes in a well-formatted
HTTP request as a string and returns a map with the keys as method, uri,
version and the values from the corresponding request.

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnection:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

Example Input:

{
"method" : "GET"
"uri" : "/index.html"
"version" : "HTTP/1.1"

}

Map Returned:

Exercise 1

32

Write a function called ExtractRequestLine that takes in a well-formatted
HTTP request as a string and returns a map with the keys as method, uri,
version and the values from the corresponding request.

"GET /index.html HTTP/1.1\r\nHost: www.mywebsite.com\r\nConnect ion:
keep-alive\r\nUpgrade-Insecure-Requests: 1\r\n\r\n"

Example Input:

{
"method" : "GET"
"uri" : "/index.html"
"version" : "HTTP/1.1"

}

Map Returned:

Exercise 1
map<string,string> ExtractRequestLine(const string& request) {
 vector<string> lines;
 boost::split(lines, request, boost::is_any_of("\r\n"),
 boost::token_compress_on);
 vector<string> components;
 string firstLine = lines[0];
 boost::split(components, firstLine, boost::is_any_of(" "),
 boost::token_compress_on);
 map<string, string> res;
 res["method"] = components[0];
 res["uri"] = components[1];
 res["version"] = components[2];
 return res;
} 33

Exercise 2

34

Write a function RemoveDuplicates that takes in a string that contains
words separated by whitespace and returns a vector that contains all of the
words in that string, in the same order as they show up, but with no duplicates.
Ignore all leading and trailing whitespace in the input string.

Example:
RemoveDuplicates(" Hi I'm sorry jon sorry hi\nhihi hi hi ")

should return vector:

["Hi", "I'm", "sorry", "jon", "hi", "hihi"]

Exercise 2

35

Write a function RemoveDuplicates that takes in a string that contains
words separated by whitespace and returns a vector that contains all of the
words in that string, in the same order as they show up, but with no duplicates.
Ignore all leading and trailing whitespace in the input string.

Example:
RemoveDuplicates(" Hi I'm sorry jon sorry hi hihi hi hi ")

should return vector:

["Hi", "I'm", "sorry", "jon", "hi", "hihi"]

vector<string> RemoveDuplicates(const string& input){

}

 string copy(input);
 boost::algorithm::trim(copy);
 std::vector<string> components;
 boost::split(components, copy, boost::is_any_of(" \t\n"),
 boost::token_compress_on);

 std::vector<string> result;
 std::set<string> unique_components;
 for (const auto& comp : components) {
 if (unique_components.find(comp) == unique_components.end()) {
 result.push_back(comp);
 unique_components.insert(comp);

 }

 }

 return result;

36

